645 research outputs found

    Optimal Treatment Rate During an Influenza Pandemic in the Presence of Drug-Resistance Emergence

    Get PDF
    The problem was posed by Seyed Moghadas, from the National Research Council Institute for Biodiagnostics in Winnipeg, Manitoba. It concerns the optimization of the rate of treatment with antivirals during a pandemic of influenza, to achieve the following objectives: 1. Minimize the total number of deaths due to influenza. 2. Minimize the total number of infections with influenza. 3. Reduce the spread of resistance to antivirals. It is understood that not all the objectives above might be satisfied at the same time, and the purpose of the work is to consider the outcome in the different scenarios. The aim of the present project is to see if optimal control theory can contribute to a better formulation of the treatment intensity, in order to bring the epidemic under control while avoiding wide-spread resistance in the population

    Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models

    Get PDF
    We study the growth rate of a cell population that follows an age-structured PDE with time-periodic coefficients. Our motivation comes from the comparison between experimental tumor growth curves in mice endowed with intact or disrupted circadian clocks, known to exert their influence on the cell division cycle. We compare the growth rate of the model controlled by a time-periodic control on its coefficients with the growth rate of stationary models of the same nature, but with averaged coefficients. We firstly derive a delay differential equation which allows us to prove several inequalities and equalities on the growth rates. We also discuss about the necessity to take into account the structure of the cell division cycle for chronotherapy modeling. Numerical simulations illustrate the results.Comment: 26 page

    Pitfalls on evaluating pair exchange interactions for modelling molecule-based magnetism

    Get PDF
    Molecule-based magnetism is a solid-state property that results from the microscopic interaction between magnetic centres or radicals. The observed magnetic response is due to unpaired electrons whose coupling leads to a particular magnetic topology. Therefore, to understand the magnetic response of a given molecule-based magnet and reproduce the available experimental magnetic properties by means of statistical mechanics, one has to be able to determine the value of the JAB magnetic exchange coupling between radicals. The calculation of JAB is thus a key point for modelling molecule-based magnetism. In this Perspectives article, we will build upon our experience in modelling molecular magnetism to point out some pitfalls on evaluating JAB couplings. Special attention must be paid to the cluster models used to evaluate JAB, which should account for cooperative effects among JAB interactions and also consider the environment (counterions, hydrogen bonding) of the two radicals whose interaction has to be evaluated. It will be also necessary to assess whether a DFT-based or a wavefunction-based method is best to study a given radical. Finally, in addition to model and method, the JAB couplings have to be able to adapt to changes in the magnetic topology due to thermal fluctuations. Therefore, it is most important to appraise in which systems molecular dynamics simulations would be required. Given the large number of issues one must tackle when choosing the correct model and method to evaluate JAB interactions for modelling magnetic properties in molecule-based materials, the “human factor” is a must to cross-examine and challenge computations before trusting any result

    Autonomous hybrid GPS/reactive navigation of an unmanned ground vehicle for precision viticulture-VINBOT

    Get PDF
    Yield forecasting can provide important benefits for wine industry in terms of quality and efficiency. Vineyard yield estimation can be obtained using several methods being the most widely used the method based on visual assessment and/or counting/weighing the yield components The increasing importance of yield forecast has lead to automated solutions for the data acquisition and allowed the first service robotics applications in viticulture. In this paper we aim to present the preliminary results obtained in the European research project VinBot: “Autonomous cloudcomputing vineyard robot to optimize yield management and wine quality”. The paper focuses in the robot navigation. Robot navigation for agriculture has been a continuous research topic in the last years. Even there is a wide number of RTK-DGPS and PPP based navigation solutions available for precision farming, navigation in vineyards has some particularities and can benefit from other navigation techniques. The high cost and in some cases other limitations as fix ratios (determined by baseline distances to base stations), or communication limitations in the field make alternative solutions desirable. In this paper, we present a hybrid reactive/GPS based navigation scheme tested successfully in vineyard navigation. The proposed solution makes use of a laser range finder and RGBD device to perform reactive row following and obstacle avoidance, while it can make use of other reactive behaviors or GPS waypoint navigation for changing from row to row or field to field, thus supporting different levels of automation. The paper includes also some experiences with recently introduced new generation low-cost RTK-DGPS devices, that in the coming years will enable the progressive introduction of viticulture robotsinfo:eu-repo/semantics/publishedVersio

    Pitfalls on evaluating pair exchange interactions for modelling molecule-based magnetism

    Get PDF
    Molecule-based magnetism is a solid-state property that results from the microscopic interaction between magnetic centres or radicals. The observed magnetic response is due to unpaired electrons whose coupling leads to a particular magnetic topology. Therefore, to understand the magnetic response of a given molecule-based magnet and reproduce the available experimental magnetic properties by means of statistical mechanics, one has to be able to determine the value of the J(AB) magnetic exchange coupling between radicals. The calculation of J(AB) is thus a key point for modelling molecule-based magnetism. In this Perspectives article, we will build upon our experience in modelling molecular magnetism to point out some pitfalls on evaluating J(AB) couplings. Special attention must be paid to the cluster models used to evaluate J(AB), which should account for cooperative effects among J(AB) interactions and also consider the environment (counterions, hydrogen bonding) of the two radicals whose interaction has to be evaluated. It will be also necessary to assess whether a DFT-based or a wavefunction-based method is best to study a given radical. Finally, in addition to model and method, the J(AB) couplings have to be able to adapt to changes in the magnetic topology due to thermal fluctuations. Therefore, it is most important to appraise in which systems molecular dynamics simulations would be required. Given the large number of issues one must tackle when choosing the correct model and method to evaluate J(AB) interactions for modelling magnetic properties in molecule-based materials, the "human factor" is a must to cross-examine and challenge computations before trusting any result.MD, JRA, and JJN acknowledge financial support from MINECO (CTQ2017-87773-P/AEI/FEDER, UE), Spanish Structures Excellence Maria de Maeztu program (MDM-2017-0767), and Catalan DURSI (2017SGR348)

    Migration paths saturations in meta-epidemic systems

    Full text link
    In this paper we consider a simple two-patch model in which a population affected by a disease can freely move. We assume that the capacity of the interconnected paths is limited, and thereby influencing the migration rates. Possible habitat disruptions due to human activities or natural events are accounted for. The demographic assumptions prevent the ecosystem to be wiped out, and the disease remains endemic in both populated patches at a stable equilibrium, but possibly also with an oscillatory behavior in the case of unidirectional migrations. Interestingly, if infected cannot migrate, it is possible that one patch becomes disease-free. This fact could be exploited to keep disease-free at least part of the population

    Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community

    Get PDF
    Accurate maps of surface water extent are of paramount importance for water management, satellite data processing and climate modeling. Several maps of water bodies based on remote sensing data have been released during the last decade. Nonetheless, none has a truly (90°N/90°S) global coverage while being thoroughly validated. This paper describes a global, spatially-complete (void-free) and accurate mask of inland/ocean water for the 2000–2012 period, built in the framework of the European Space Agency (ESA) Climate Change Initiative (CCI). This map results from the synergistic combination of multiple individual SAR and optical water body and auxiliary datasets. A key aspect of this work is the original and rigorous stratified random sampling designed for the quality assessment of binary classifications where one class is marginally distributed. Input and consolidated products were assessed qualitatively and quantitatively against a reference validation database of 2110 samples spread throughout the globe. Using all samples, overall accuracy was always very high among all products, between 98% and 100%. The CCI global map of open water bodies provided the best water class representation (F-score of 89%) compared to its constitutive inputs. When focusing on the challenging areas for water bodies’ mapping, such as shorelines, lakes and river banks, all products yielded substantially lower accuracy figures with overall accuracies ranging between 74% and 89%. The inland water area of the CCI global map of open water bodies was estimated to be 3.17 million km2 ± 0.24 million km2. The dataset is freely available through the ESA CCI Land Cover viewer

    The magnetic fingerprint of dithiazolyl-based molecule magnets

    Get PDF
    Magnetic bistability in organic-radical based materials has attracted significant interest due to its potential application in electronic devices. The first-principles bottom-up study herein presented aims at elucidating the key factors behind the different magnetic response of the low and high temperature phases of four different switchable dithiazolyl (DTA)-based compounds. The drastic change in the magnetic response upon spin transition is always due to the changes in the J(AB) magnetic interactions between adjacent radicals along the -stacks of the crystal, which in turn are driven mostly by the changes in the interplanar distance and degree of lateral slippage, according to the interpretation of a series of magneto-structural correlation maps. Furthermore, specific geometrical dispositions have been recognized as a ferromagnetic fingerprint in such correlations. Our results thus show that an appropriate substitution of the chemical skeleton attached to the DTA ring could give rise to new organic materials with dominant ferromagnetic interactions

    A comparative study using an autostereoscopic display with augmented and virtual reality

    Full text link
    Advances in display devices are facilitating the integration of stereoscopic visualization in our daily lives. However, autostereoscopic visualization has not been extensively exploited. In this paper, we present a system that combines Augmented Reality (AR) and autostereoscopic visualization. We also present the first study that compares different aspects using an autostereoscopic display with AR and VR, in which 39 children from 8 to 10 years old participated. In our study, no statistically significant differences were found between AR and VR. However, the scores were very high in nearly all of the questions, and the children also scored the AR version higher in all cases. Moreover, the children explicitly preferred the AR version (81%). For the AR version, a strong and significant correlation was found between the use of the autostereoscopic screen in games and seeing the virtual object on the marker. For the VR version, two strong and significant correlations were found. The first correlation was between the ease of play and the use of the rotatory controller. The second correlation was between depth perception and the game global score. Therefore, the combinations of AR and VR with autostereoscopic visualization are possibilities for developing edutainment systems for childrenThis work was funded by the Spanish APRENDRA project (TIN2009-14319-C02). We would like to thank the following for their contributions: AIJU, the "Escola d'Estiu" and especially Ignacio Segui, Juan Cano, Miguelon Gimenez, and Javier Irimia. This work would not have been possible without their collaboration. The ALF3D project (TIN2009-14103-03) for the autostereoscopic display. Roberto Vivo, Rafa Gaitan, Severino Gonzalez, and M. Jose Vicent, for their help. The children's parents who signed the agreement to allow their children to participate in the study. The children who participated in the study. The ETSInf for letting us use its facilities during the testing phase.Arino, J.; Juan Lizandra, MC.; Gil Gómez, JA.; Mollá Vayá, RP. (2014). A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour and Information Technology. 33(6):646-655. https://doi.org/10.1080/0144929X.2013.815277S646655336Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355Blum, T.et al. 2012. Mirracle: augmented reality in-situ visualization of human anatomy using a magic mirror.In: IEEE virtual reality workshops, 4–8 March 2012, Costa Mesa, CA, USA. Washington, DC: IEEE Computer Society, 169–170.Botden, S. M. B. I., Buzink, S. N., Schijven, M. P., & Jakimowicz, J. J. (2007). Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference? World Journal of Surgery, 31(4), 764-772. doi:10.1007/s00268-006-0724-yChittaro, L., & Ranon, R. (2007). Web3D technologies in learning, education and training: Motivations, issues, opportunities. Computers & Education, 49(1), 3-18. doi:10.1016/j.compedu.2005.06.002Dodgson, N. A. (2005). Autostereoscopic 3D displays. Computer, 38(8), 31-36. doi:10.1109/mc.2005.252Ehara, J., & Saito, H. (2006). Texture overlay for virtual clothing based on PCA of silhouettes. 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. doi:10.1109/ismar.2006.297805Eisert, P., Fechteler, P., & Rurainsky, J. (2008). 3-D Tracking of shoes for Virtual Mirror applications. 2008 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2008.4587566Fiala, M. (2007). Magic Mirror System with Hand-held and Wearable Augmentations. 2007 IEEE Virtual Reality Conference. doi:10.1109/vr.2007.352493Froner, B., Holliman, N. S., & Liversedge, S. P. (2008). A comparative study of fine depth perception on two-view 3D displays. Displays, 29(5), 440-450. doi:10.1016/j.displa.2008.03.001Holliman, N. S., Dodgson, N. A., Favalora, G. E., & Pockett, L. (2011). Three-Dimensional Displays: A Review and Applications Analysis. IEEE Transactions on Broadcasting, 57(2), 362-371. doi:10.1109/tbc.2011.2130930Ilgner, J. F. R., Kawai, T., Shibata, T., Yamazoe, T., & Westhofen, M. (2006). Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education. Stereoscopic Displays and Virtual Reality Systems XIII. doi:10.1117/12.647591Jeong, J.-S., Park, C., Kim, M., Oh, W.-K., & Yoo, K.-H. (2011). Development of a 3D Virtual Laboratory with Motion Sensor for Physics Education. Ubiquitous Computing and Multimedia Applications, 253-262. doi:10.1007/978-3-642-20975-8_28Jones, J. A., Swan, J. E., Singh, G., Kolstad, E., & Ellis, S. R. (2008). The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. Proceedings of the 5th symposium on Applied perception in graphics and visualization - APGV ’08. doi:10.1145/1394281.1394283Juan, M. C., & Pérez, D. (2010). Using augmented and virtual reality for the development of acrophobic scenarios. Comparison of the levels of presence and anxiety. Computers & Graphics, 34(6), 756-766. doi:10.1016/j.cag.2010.08.001Kaufmann, H., & Csisinko, M. (2011). Wireless Displays in Educational Augmented Reality Applications. Handbook of Augmented Reality, 157-175. doi:10.1007/978-1-4614-0064-6_6Kaufmann, H., & Meyer, B. (2008). Simulating educational physical experiments in augmented reality. ACM SIGGRAPH ASIA 2008 educators programme on - SIGGRAPH Asia ’08. doi:10.1145/1507713.1507717Konrad, J. (2011). 3D Displays. Optical and Digital Image Processing, 369-395. doi:10.1002/9783527635245.ch17Konrad, J., & Halle, M. (2007). 3-D Displays and Signal Processing. IEEE Signal Processing Magazine, 24(6), 97-111. doi:10.1109/msp.2007.905706Kwon, H., & Choi, H.-J. (2012). A time-sequential mutli-view autostereoscopic display without resolution loss using a multi-directional backlight unit and an LCD panel. Stereoscopic Displays and Applications XXIII. doi:10.1117/12.907793Livingston, M. A., Zanbaka, C., Swan, J. E., & Smallman, H. S. (s. f.). Objective measures for the effectiveness of augmented reality. IEEE Proceedings. VR 2005. Virtual Reality, 2005. doi:10.1109/vr.2005.1492798Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353. doi:10.1016/j.compedu.2006.12.008Montgomery, D. J., Woodgate, G. J., Jacobs, A. M. S., Harrold, J., & Ezra, D. (2001). Performance of a flat-panel display system convertible between 2D and autostereoscopic 3D modes. Stereoscopic Displays and Virtual Reality Systems VIII. doi:10.1117/12.430813Morphew, M. E., Shively, J. R., & Casey, D. (2004). Helmet-mounted displays for unmanned aerial vehicle control. Helmet- and Head-Mounted Displays IX: Technologies and Applications. doi:10.1117/12.541031Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20-28. doi:10.1016/j.cag.2005.10.004Petkov, E. G. (2010). Educational Virtual Reality through a Multiview Autostereoscopic 3D Display. Innovations in Computing Sciences and Software Engineering, 505-508. doi:10.1007/978-90-481-9112-3_86Shen, Y., Ong, S. K., & Nee, A. Y. C. (2011). Vision-Based Hand Interaction in Augmented Reality Environment. International Journal of Human-Computer Interaction, 27(6), 523-544. doi:10.1080/10447318.2011.555297Swan, J. E., Jones, A., Kolstad, E., Livingston, M. A., & Smallman, H. S. (2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE Transactions on Visualization and Computer Graphics, 13(3), 429-442. doi:10.1109/tvcg.2007.1035Urey, H., Chellappan, K. V., Erden, E., & Surman, P. (2011). State of the Art in Stereoscopic and Autostereoscopic Displays. Proceedings of the IEEE, 99(4), 540-555. doi:10.1109/jproc.2010.2098351Zhang, Y., Ji, Q., and Zhang, W., 2010. Multi-view autostereoscopic 3D display.In: International conference on optics photonics and energy engineering, 10–11 May 2010, Wuhan, China. Washington, DC: IEEE Computer Society, 58–61
    corecore